# Oil and Gas Exploration & Development Activity Forecast

### Canadian Beaufort Sea 2012 - 2027

### **Prepared for**

### Beaufort Regional Environmental Assessment Aboriginal Affairs and Northern Development Canada

Prepared by:

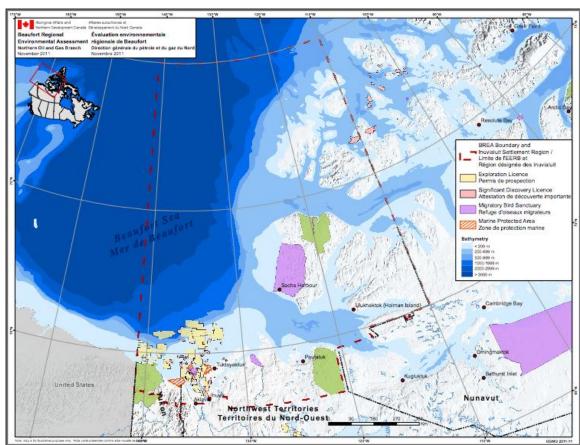
Lin Callow, LTLC Consulting in association with Salmo Consulting Inc.

### **TABLE OF CONTENTS**

| 1. | Int | rodi  | 1ction                                                           | 1  |
|----|-----|-------|------------------------------------------------------------------|----|
| 2. | His | story | of the Oil and Gas Industry in the Mackenzie Beaufort Region     | 2  |
|    | 2.1 | -     | lling Platforms                                                  |    |
|    | 2.1 | 1.1   | Artificial Islands                                               | 6  |
|    | 2.1 | 1.2   | Caisson Structures                                               | 6  |
|    | 2.1 | 1.3   | Floating Drillships                                              | 11 |
|    | 2.1 | 1.4   | Conical Floating Drilling Platform                               | 11 |
|    | 2.2 |       | ay Ice Islands                                                   |    |
|    | 2.3 | Exp   | oloration Results                                                | 13 |
|    | 2.4 | Arc   | tic Exploration and World Events                                 | 13 |
|    | 2.5 |       | tic Oil and Gas Production                                       |    |
| 3. | Th  |       | cle of Offshore Industry Activity                                |    |
|    | 3.1 | Geo   | ological and Geophysical Programs                                | 16 |
|    | 3.2 |       | lling Programs                                                   |    |
|    | 3.3 | _     | nificant Discovery and Commercial Discovery Applications         |    |
|    | 3.4 |       | velopment Plans and Operation Authorizations                     |    |
|    | 3.5 |       | nmercial Discovery Development Timeline                          |    |
|    | 3.6 |       | erations Authorizations for Decommissioning and Abandonment      |    |
|    | 3.7 |       | ential Future Oil and Gas Exploration and Development Activities |    |
| 4. | Pre |       | ed Beaufort Sea Oil and Gas Activity                             |    |
|    | 4.1 | Ass   | umptions                                                         |    |
|    |     | 1.1   | Factors in Development of Assumptions                            |    |
|    |     |       | Base Assumptions                                                 |    |
|    | 4.2 | Pre   | dicted Industry Activity                                         |    |
|    | 4.7 | 2.1   | Seismic Surveys                                                  |    |
|    | 4.7 | 2.2   | Deep Shelf and Slope Beaufort Sea Wells                          |    |
|    | 4.7 | 2.3   | Shallow Beaufort Shelf Wells                                     |    |
|    | 4.7 | 2.4   | Short- to Medium-Term Oil and Gas Activity Forecast              |    |
|    |     | 2.5   | Longer Term Oil and Gas Activity                                 |    |
| 5. | Ma  | ckei  | nzie Delta - Beaufort Sea Hydrocarbon Resource Potential         | 39 |
| 6  | RE  | EEB   | FNCFS                                                            | 41 |

### **TABLES**

|                     | Drilling Activity in the Beaufort Sea                                                                                |     |
|---------------------|----------------------------------------------------------------------------------------------------------------------|-----|
|                     | Activities and Estimated Time Schedule for a Generalized Beaufort Sea Offshore Development Project                   |     |
|                     | Potential Future Oil and Gas Exploration and Development Activities                                                  | 17  |
| Table 5.            | (from BSStRPA 2008)                                                                                                  | 21  |
| Table 4.            | Current Beaufort Sea Exploration Licences                                                                            |     |
| Table 5.            | Summary of Offshore Oil and Gas Activity 2012-2027                                                                   |     |
| Table 6.            | Mackenzie Delta and Beaufort Sea Oil and Gas Resource Potential                                                      |     |
|                     | FIGURES                                                                                                              |     |
| Figure 1.           | BREA Study Area (source Northern Oil and Gas Branch of Aboriginal                                                    | 1   |
| Elaura 2            | Affairs and Northern Development Canada 2011)                                                                        |     |
| Figure 2.           | Concrete Caisson (Tarsuit Caisson)(source G.W. Timco)<br>Single Steel Drilling Caisson (SSDC/SDC)(source G.W. Timco) |     |
| Figure 3. Figure 4. | Caisson-Retained Island (CRI)(source A. Barker)                                                                      |     |
| Figure 5.           | Mobile Arctic Caisson (MAC)(source Gulf Canada Resources)                                                            |     |
| Figure 5.           | Canmar Explorer 1 with an Icebreaker Being Forced off Station by                                                     | 10  |
| riguie o.           | Ice in October 1978 (source Gulf Canada Resources)                                                                   | 11  |
| Figure 7.           | Conical Floating Drilling Platform (Kulluk)(source Gulf Canada                                                       | 11  |
| rigure 7.           | Resources)                                                                                                           | 12  |
| Figure 8.           | National Energy Board Exploration and Production Approval Phases                                                     |     |
|                     | (revised from Dixit 2009)                                                                                            | 15  |
| Figure 9.           | Northern Oil and Gas Rights Management Process (revised from                                                         |     |
| J                   | NOGB of AANDC 2012)                                                                                                  | 15  |
| Figure 10.          |                                                                                                                      |     |
|                     | BSStRPA 2008)                                                                                                        | 27  |
| Figure 11.          | Current Exploration Licences and Significant Discovery Areas Map                                                     |     |
|                     | (from AANDC 2011)                                                                                                    |     |
| Figure 12.          |                                                                                                                      | 32  |
| Figure 13.          |                                                                                                                      |     |
|                     | Mackenzie Delta (from MGP 2005)                                                                                      | 35  |
| Figure 14.          |                                                                                                                      |     |
| D: 45               | Beaufort Sea (from MGP 2005)                                                                                         | 35  |
| Figure 15.          |                                                                                                                      | 0.7 |
| F: 16               | in CAPP 2011)                                                                                                        |     |
| Figure 16.          |                                                                                                                      | 38  |
| Figure 17.          |                                                                                                                      |     |
|                     | Exploratory Wells in the Mackenzie/Beaufort Geological Province                                                      | 40  |
|                     | (from Chen et al. 2007)                                                                                              | 40  |


### 1. INTRODUCTION

The Beaufort Regional Environmental Assessment (BREA) is a multi-stakeholder regional research initiative that will make historical information available and gather new information vital to the future management of oil and gas activity in the Beaufort Sea. BREA will help ensure the Inuvialuit, governments, regulators, industry, and all Canadians are better prepared for oil and gas exploration and development in the Beaufort Sea by:

- 1. filling regional information and data gaps related to offshore oil and gas activities; and
- 2. supporting effective and efficient regulatory decision-making by providing the necessary data and information to all stakeholders.

BREA is supporting targeted research projects that will improve the management of oil and gas activities in the Beaufort Sea. The BREA area of study is the Canadian Beaufort Sea within the Inuvialuit Settlement Region (ISR), with an emphasis on the deeper waters offshore where new Exploration Licences (ELs) have been issued, but also including the broader northern area covered within the ISR boundaries.

Figure 1. BREA Study Area (source Northern Oil and Gas Branch of Aboriginal Affairs and Northern Development Canada 2011)



This report is intended to provide a general description of potential oil and gas activities in the Beaufort Sea in the short to medium time period (15 years). It is to provide the BREA Steering Committee, its working groups and arctic researchers with a forecast of industry activity they can use when assessing the priorities, scope and timing of Beaufort Sea research. It is also intended to help with understanding the implications of BREA research findings.

The forecasts and opinions expressed in this report are the responsibility of LTLC Consulting and Salmo Consulting Inc. and do not represent the official position or views of Aboriginal Affairs and Northern Development Canada.

# 2. HISTORY OF THE OIL AND GAS INDUSTRY IN THE MACKENZIE BEAUFORT REGION

This section builds on the 2009 report "Beaufort Regional Environmental Reports Summary" prepared by LTLC Consulting and Salmo Consulting Inc. for the Canadian Association of Petroleum Producers (CAPP). Where recent information has been added it is referenced.

Oil and gas development in the Mackenzie Valley began with the discovery of oil at Norman Wells by Imperial Oil Limited (Imperial) in 1919, and the subsequent construction of a topping plant in 1921. Hydrocarbon development continued to be focused on Norman Wells until the 1950s.

Exploration activity in the Mackenzie Delta/Beaufort Sea region began onshore in 1957 with early reconnaissance-level ground and air studies by the British American Oil Company (BA), Chevron Canada Limited (Chevron), Dome Petroleum Limited (Dome), Imperial, Shell Canada Limited (Shell), and others.

In 1961, the British American Oil Company Limited (BA), which later became Gulf Canada Limited (Gulf) completed the first exploratory drilling in the Mackenzie Delta. This was followed by onshore drilling for oil and gas at the Reindeer site on Richards Island by a consortium comprised of BA, Shell, and Imperial. With the discovery of oil and gas at Prudhoe Bay Alaska in 1968, exploration activity intensified throughout the Western Arctic, particularly in the Mackenzie Delta and Canadian Beaufort Sea. In 1970, Imperial reported the first discovery of oil in the Mackenzie Delta at Atkinson Point. The discovery of major gas fields by Imperial at Taglu (1971), Gulf at Parsons Lake (1972) and Shell at Niglintgak (1973) resulted in the first proposed Mackenzie Valley Pipeline in 1974, and increased exploration and investment offshore.

The settlement of native land claims had a major influence on hydrocarbon development in the Canadian Beaufort Region during the 1970s and 1980s. Through the actions of the Committee on Original Peoples Entitlement (COPE), the Inuvialuit Lands Rights Settlement Agreement in Principle was signed in 1978. This agreement led to completion of the Western Arctic Claim Settlement and the Report of the Task Force on Northern Conservation in 1984. These agreements culminated in the signing of the Inuvialuit Final Agreement (IFA) in 1984. The IFA set aside a 906,430 square kilometer area, including much of the Canadian Beaufort Sea, referred to as the Inuvialuit Settlement Region (ISR), which would be managed under the terms of the IFA.

Canadian offshore drilling in the Beaufort Sea began in the early 1970s. The National Energy Board (NEB) records show 142 Canadian Arctic offshore wells have been drilled, with 92 of these wells drilled in the Beaufort Sea region. Historical well records show that the industry operated in an extremely harsh environment, where drillships were often forced off station by heavy ice. Records also show that numerous well kicks and wellhead gas and water flows were encountered and controlled. Yet there have been no significant oil spill incidents and the industry has a track record of technical innovation (CAPP 2011). Numerous innovative drilling platforms and techniques were developed and proven to operate successfully in the Canadian Beaufort Sea. Table 1 summarizes the Beaufort Sea offshore drilling activity since 1972 and provides the Well Operators, the dates wells were drilled, the drilling platforms used, and the water depths. The table was developed using data provided by the NEB and by reviewing historical Well Reports downloaded from the Northwest Territories Geoscience Office database.

Table 1. Drilling Activity in the Beaufort Sea

| WELLNAME                        | WELL     | WELL        | RIG         | DRILLING DI ATEORM   | WATER<br>DEPTH |
|---------------------------------|----------|-------------|-------------|----------------------|----------------|
| WELL NAME                       | OPERATOR | SPUD DATE   | RELEASE     | DRILLING PLATFORM    | (M)            |
| NUKTAK C-22                     | Imperial | 16-Dec-1972 | 8-Mar-1973  | Land on Hooper Is    | NA             |
| IMMERK B-48                     | Imperial | 17-Sep-1973 | 22-Dec-1973 | Sacrificial Beach Is | 3              |
| ADGO F-28                       | Imperial | 28-Dec-1973 | 19-Mar-1974 | Sandbag Retained Is  | 2              |
| PULLEN E-17                     | Imperial | 21-Apr-1974 | 11-Jul-1974 | Sandbag Retained Is  | 2              |
| UNARK L-24                      | Sun      | 26-Sep-1974 | 24-May1975  | Hauled Island        | 2              |
| PELLY B-35                      | Sun      | 5-Oct-1974  | 14-Feb-1975 | Hauled Island        | 2              |
| ADGO P-25                       | Imperial | 2-Jan-1975  | 28-Mar-1975 | Sandbag Retained Is  | 2              |
| NETSERK B-44                    | Imperial | 6-Jan-1975  | 8-Jun-1975  | Sandbag Retained Is  | 5              |
| ADGO C-15                       | Imperial | 21-Apr-1975 | 25-Jul-1975 | Sandbag Retained Is  | 2              |
| IKATTOK J-17                    | Imperial | 10-Jul-1975 | 28-Feb-1976 | Sandbag Retained Is  | 2              |
| NETSERK F-40                    | Imperial | 8-Nov-1975  | 9-May-1976  | Sandbag Retained Is  | 8              |
| SARPIK B-35                     | Imperial | 2-Apr-1976  | 4-Sep-1976  | Sandbag Retained Is  | 4              |
| KOPANOAR D-14                   | Dome     | 8-Aug-1976  | 26-Sep-1976 | Canmar Explorer 3    | 60             |
| TINGMIARK K-91                  | Dome     | 11-Aug-1976 | 18-Oct-1977 | Canmar Explorer 1/3  | 28             |
| NEKTORALIK K-59                 | Dome     | 23-Sep-1976 | 17-Oct-1977 | Canmar Explorer 2/3  | 64             |
| KOPANOAR M-13                   | Dome     | 27-Sep-1976 | 10-Sep-1979 | Canmar Explorer 3    | 57             |
| KUGMALLIT H-59                  | Imperial | 30-Sep-1976 | 10-Nov-1976 | Sandbag Retained Is  | 5              |
| ARNAK L-30                      | Imperial | 5-Oct-1976  | 16-Mar-1977 | Sacrificial Beach Is | 9              |
| UNARK 2L-24                     | Sun      | 19-Oct-1976 | 8-May-1977  | Hauled Island        | 2              |
| KANNERK G-42                    | Imperial | 30-Mar-1977 | 14-May1977  | Sacrificial Beach Is | 8              |
| UKALERK C-50                    | Dome     | 18-Jul-1977 | 3-Oct-1977  | Canmar Explorer 1    | 42             |
| KAGLULIK A-75                   | Dome     | 19-Jul-1977 | 6-Aug-1978  | Canmar Explorer 3    | 39             |
| NERLERK M-98                    | Dome     | 4-Oct-1977  | 28-Aug-1982 | Canmar Explorer 1/3  | 52             |
| ISSERK E-27                     | Imperial | 4-Dec-1977  | 5-May-1978  | Sacrificial Beach Is | 13             |
| NATSEK E-56                     | Dome     | 10-Jul-1978 | 8-Oct-1979  | Canmar Explorer 2-4  | 34             |
| UKALERK 2C-50                   | Dome     | 10-Aug-1978 | 11-Oct-1979 | Canmar Explorer 1    | 42             |
| TARSIUT A-25                    | Dome     | 18-Oct-1978 | 28-Jul-1980 | Canmar Explorer 3    | 20             |
| KAGLULIK M-64                   | Dome     | 3-Nov-1978  | 10-Jul-1979 | Canmar Explorer 2    | 27             |
| ADGO J-27                       | Esso     | 5-Apr-1979  | 7-Aug-1979  | Sandbag Retained Is  | 2              |
| KENALOOAK J-94                  | Dome     | 20-Sep-1979 | 1-Nov-1982  | Canmar Explorer 2-4  | 68             |
| KOPANOAR L-34                   | Dome     | 11-Oct-1979 | 26-Nov-1979 | Canmar Explorer 2    | 58             |
| KOAKOAK O-22                    | Dome     | 5-Nov-1979  | 31-Oct-1981 | Canmar Explorer 1/2  | 49             |
| KOPANOAR 2L-34                  | Dome     | 26-Nov-1979 | 28-Nov-1979 | Canmar Explorer 4    | 56             |
| ISSUNGNAK 0-61                  | Imperial | 6-Feb-1980  | 8-Jul-1980  | Sacrificial Beach Is | 37             |
| KILANNAK A-77                   | Dome     | 23-Jun-1980 | 4-Sep-1981  | Canmar Explorer 3    | 38             |
| ORVILRUK O-03                   | Dome     | 9-Jul-1980  | 16-Sep-1980 | Canmar Explorer 1    | 60             |
| KOPANOAR I-44                   | Dome     | 10-Jul-1980 | 1-Aug-1980  | Canmar Explorer 4    | 59             |
| KOPANOAR 2I-44                  | Dome     | 2-Aug-1980  | 28-Oct-1981 | Canmar Explorer 2    | 58             |
| ISSUNGNAK 20-61                 | Imperial | 2-Oct-1980  | 13-Aug-1981 | Sacrificial Beach Is | 19             |
| N. ISSUNGNAK L-86               | Gulf     | 17-Jul-1981 | 17-Oct-1981 | Canmar Explorer 2    | 26             |
| TDVALUE B-35                    | Imperial | 21-Sep-1981 | 24-Dec-1981 | Sacrificial Beach Is | 12             |
| IRKALUK B-35<br>E. TARSIUT N-44 | Dome     | 27-Sep-1981 | 4-Oct-1982  | Canmar Explorer 4/2  | 58             |
| W. ATKINSON L-17                | Gulf     | 10-Dec-1981 | 7-Jun-1982  | Concrete Caisson     | 19<br>7        |
|                                 | Imperial | 1-May-1982  | 25-Jun-1982 | Sandbag Retained Is  |                |
| E. TARSIUT N-44A                | Gulf     | 8-Jun-1982  | 19-Sep-1982 | Concrete Caisson     | 19             |
| KIGGAVIK A-43                   | Gulf     | 21-Jul-1982 | 17-Oct-1982 | Canmar Explorer 1    | 18             |

Table 1. Drilling Activity in the Beaufort Sea (cont.)

|                    | WELL     | WELL        | RIG         |                      | WATER<br>DEPTH |
|--------------------|----------|-------------|-------------|----------------------|----------------|
| WELL NAME          | OPERATOR | SPUD DATE   | RELEASE     | DRILLING PLATFORM    | (M)            |
| AIVERK I-45        | Dome     | 5-Oct-1982  | 23-Oct-1982 | Canmar Explorer 2    | 62             |
| AIVERK 2I-45       | Dome     | 3-Nov-1982  | 11-Oct-1984 | Canmar Explorer 4/1  | 61             |
| ITIYOK I-27        | Imperial | 5-Nov-1982  | 2-May-1983  | Sacrificial Beach Is | 14             |
| UVILUK P-66        | Dome     | 10-Nov-1982 | 21-May1983  | SSDC                 | 30             |
| NATIAK O-44        | Dome     | 16-Jul-1983 | 25-Sep-1984 | Canmar Explorer 2    | 44             |
| HAVIK B-41         | Dome     | 17-Jul-1983 | 24-Aug-1986 | Canmar Explorer 1    | 35             |
| SIULIK I-05        | Dome     | 25-Jul-1983 | 18-Oct-1984 | Canmar Explorer 4    | 52             |
| ARLUK E-90         | Dome     | 30-Jul-1983 | 13-Oct-1985 | Canmar Explorer 3    | 57             |
| PITSIULAK A-05     | Gulf     | 22-Aug-1983 | 26-Jul-1984 | Kulluk               | 27             |
| KADLUK O-07        | Imperial | 25-Sep-1983 | 24-Apr-1984 | CRI                  | 14             |
| AMAULIGAK I-44     | Gulf     | 7-Oct-1983  | 15-Nov-1983 | Kulluk               | 20             |
| KOGYUK N-67        | Gulf     | 28-Oct-1983 | 30-Jan-1984 | SSDC                 | 28             |
| AMAULIGAK J-44     | Gulf     | 16-Nov-1983 | 23-Sep-1984 | Kulluk               | 31             |
| AMERK O-09         | Imperial | 22-Aug-1984 | 3-Mar-1985  | CRI                  | 26             |
| W. TARSIUT P-45    | Gulf     | 25-Sep-1984 | 24-Dec-1984 | Molikpaq             | 22             |
| NERLERK J-67       | Dome     | 26-Sep-1984 | 24-Oct-1985 | Kulluk               | 45             |
| ADGO H-29          | Imperial | 27-Sep-1984 | 12-Jan-1985 | Sandbag Retained Is  | 3              |
| NIPTERK L-19       | Imperial | 3-Oct-1984  | 23-Mar-1985 | Sacrificial Beach Is | 11             |
| AKPAK P-35         | Gulf     | 17-Oct-1984 | 8-Nov-1985  | Kulluk               | 41             |
| NIPTERK L-19A      | Imperial | 21-Apr-1985 | 15-Jul-1985 | Sacrificial Beach Is | 11             |
| AKPAK 2P-35        | Gulf     | 8-Jul-1985  | 14-Aug-1985 | Kulluk               | 41             |
| ADLARTOK P-09      | Dome     | 8-Aug-1985  | 17-Oct-1985 | Canmar Explorer 3    | 68             |
| EDLOK M-56         | Dome     | 10-Aug-1985 | 18-Sep-1985 | Canmar Explorer 4    | 32             |
| AMAULIGAK I-65     | Gulf     | 24-Sep-1985 | 21-Jan-1986 | Molikpaq             | 23             |
| ADGO G-24          | Imperial | 7-Oct-1985  | 7-Jan-1986  | Sandbag Retained Is  | 2              |
| AAGNERK E-56       | Gulf     | 28-Oct-1985 | 26-Jun-1986 | Kulluk               | 20             |
| MINUK I-53         | Imperial | 27-Nov-1985 | 2-May-1986  | Sacrificial Beach Is | 15             |
| NORTH ELLICE L-39  | Chevron  | 25-Jan-1986 | 20-Apr-1986 | Sandbag Retained Is  | 2              |
| AMAULIGAK I-65A    | Gulf     | 28-Jan-1986 | 20-Mar-1986 | Molikpaq             | 23             |
| AMAULIGAK I-65B    | Gulf     | 20-Mar-1986 | 19-Sep-1986 | Molikpaq             | 23             |
| ARNAK K-06         | Imperial | 27-Apr-1986 | 12-Aug-1986 | Sacrificial Beach Is | 8              |
| KAUBVIK I-43       | Imperial | 22-Oct-1986 | 10-Jan-1987 | CRI                  | 18             |
| ANGASAK L-03       | Trillium | 24-Feb-1987 | 12-Apr-1987 | Spray Ice Island     | 5              |
| AMAULIGAK F-24     | Gulf     | 1-Oct-1987  | 12-Aug-1988 | Molikpaq             | 32             |
| AMAULIGAK 2F-24    | Gulf     | 22-Dec-1987 | 29-Jan-1988 | Molikpaq             | 32             |
| AMAULIGAK 2F-24A   | Gulf     | 30-Jan-1988 | 17-Feb-1988 | Molikpaq             | 32             |
| AMAULIGAK 2F-24B   | Gulf     | 15-Apr-1988 | 7-Aug-1988  | Molikpaq             | 32             |
| AMAULIGAK O-86     | Gulf     | 30-Jun-1988 | 26-Aug-1988 | Kulluk               | 20             |
| AMAULIGAK CH NO.1  | Gulf     | 12-Aug-1988 | 7-Sep-1988  | Molikpaq             | 32             |
| AMAULIGAK 2F-24BST | Gulf     | 27-Jun-1988 | 7-Aug-1988  | Molikpaq             | 32             |
| NIPTERK P-32       | Esso     | 21-Feb-1989 | 20-Apr-1989 | Spray Ice Island     | 7              |
| IMMIUGAK N-05      | Gulf     | 1-Jun-1989  | 10-Jun-1989 | Kulluk               | 32             |
| IMMIUGAK A-06      | Gulf     | 16-Jun-1989 | 22-Sep-1989 | Kulluk               | 53             |
| KINGARK J-54       | Amoco    | 18-Jul-1989 | 10-Oct-1989 | Canmar Explorer 1    | 59             |
| ISSERK I-15        | Imperial | 11-Nov-1989 | 8-Jan-1990  | Molikpaq             | 12             |
| PAKTOA C-60        | Devon    | 5-Dec-2005  | 19-Mar-2006 | SDC                  | 13             |

#### 2.1 DRILLING PLATFORMS

The following information on the various types of drilling platforms used in the Canadian Beaufort Sea is summarized from Timco et al. (2009).

### 2.1.1 Artificial Islands

The first offshore man-made drilling island was constructed in 1973 by Imperial for the Immerk B-48 well. Although, Imperial drilled the Nuktak C-22 well in the Beaufort Sea region a year earlier, records show that it was a conventionally drilled well on Hooper Island. Artificial offshore islands were constructed by either dredging the local sea bottom and building-up an island (referred to as a sacrificial beach or sandbag-retained island, or by trucking gravel from the shore and depositing it to form an island (referred to as a hauled island. The latter approach was carried out during winter months across ice roads. Table 1 shows that these artificial islands were constructed in shallow water. Most were located in the landfast ice zone, where first-year ice has little movement during the winter months. Although, artificial islands allowed for year round drilling, they were subject to wave action and in 1985 a rig on the Minuk I-53 sacrificial beach island was lost during a severe storm (Dixit pers. comm. 2012).

### 2.1.2 Caisson Structures

In the early 1980's, special caisson structures were designed and built to allow year-round drilling and exploration of regions further offshore in deeper water and harsher ice conditions. The following four types of caisson retained drilling platforms were used in the Canadian Beaufort:

- Concrete Caisson (Tarsuit Caisson)
- Single-Steel Drilling Caisson (SSDC/SDC)
- Caisson-Retained Island (CRI)
- Molikpak Mobile Arctic Caisson (MAC)



Figure 2. Concrete Caisson (Tarsuit Caisson)(source G.W. Timco)

The concrete caisson island was developed by Gulf and deployed at Tarsuit N-44 in 1981. The structure consisted of four concrete caissons that were floated to the drilling site and ballasted down with sand to form a square over an underwater berm that was within 6m of the water surface. The inner core was filled with dredged sand. This structure was not considered a "mobile" structure due to the difficulty of resetting and connecting the four caissons. It had no issues with wave loads, but wave action undercut the footings of the caissons necessitating remedial action. Wave splash was also a problem, due to its low freeboard and flat sides. Later caisson structures were designed with wave deflection collars. The concrete (Tarsuit) caisson structure was only used for drilling at the Tarsuit N-44 location.



Figure 3. Single Steel Drilling Caisson (SSDC/SDC)(source G.W. Timco)

The Single-Steel Drilling Caisson (SSDC) was operated by Canadian Marine Drilling Limited (Canmar) a subsidiary of Dome. It was constructed from a former tanker and brought to the Beaufort Sea in 1982. In the winters of 1982/83 and 1983/84, it drilled at two different locations in approximately 30m of water. In 1985/86, a new steel base, the MAT, was designed, built and deployed. This removed a limitation of the SSDC that had required construction of a subsurface sand berm for locations deeper than 9m. The SSDC combined with the MAT was capable of operating year round in water depths of 7 to 24m without a berm, and in a wide variety of bottom conditions. It was renamed the SDC and used in the winter of 2005/06 by Devon Canada Corporation (Devon) to drill the Paktoa C-60 well in 13m of water.



Figure 4. Caisson-Retained Island (CRI)(source A. Barker)

The Caisson Retained Island (CRI) was originally built by Imperial. It was developed in 1977, as a means of reducing dredge quantities, needed for the construction of traditional sand islands. It was first deployed in the Canadian Beaufort Sea in the summer of 1983. The CRI consisted of 8 individual caissons forming a ring held together with two prestressed bands of steel wire cable. It was therefore named the stressed Caisson Retained Island and overall it had an octagonal-shape with an inclined outer face. The central core was filled with sand.



Figure 5. Mobile Arctic Caisson (MAC)(source Gulf Canada Resources)

The Molikpaq a Mobile Arctic Caisson (MAC) was deployed in the Canadian Beaufort Sea in 1984. It was developed by Gulf and consisted of a continuous steel annulus sitting on a self-contained deck structure. The outer face of the Molikpaq was designed for extreme ice features. The structure was able to operate without a berm in water depths ranging from 9 to 21m. In greater water depths, the structure was designed to sit on a submerged berm. The core of the annulus was filled with sand, which provided over 80 percent of the design horizontal resistance. To achieve the full design horizontal resistance under dynamic load, densification of the hydraulically placed core was required. Like many offshore vessels the Molikpag used water for ballast.

### 2.1.3 Floating Drillships

In 1976 Dome, through its subsidiary Canmar, brought a fleet of three ice reinforced drillships and accompanying icebreakers to the Beaufort Sea to support its oil and gas exploration program. The floating drillships (Explorers 1, 2 and 3) were employed during the summer months in waters, up to 68m deep along the edge of the shear ice zone. They were moored on station during the summer (essentially open water) months. It often took at least two years to drill and test a well (Table 1). These drillships required the support of ice management icebreakers. Icebreakers would break any oncoming ice and reduce the size of the floe that could impact the vessel. Drilling usually started in late June and some years extended into November. In 1979 Dome sent a fourth drillship the Explorer 4 to the Canadian Beaufort Sea.

Figure 6. Canmar Explorer 1 with an Icebreaker Being Forced off Station by Ice in October 1978 (source Gulf Canada Resources)



### 2.1.4 Conical Floating Drilling Platform

In 1983 Gulf built an inverted-cone shaped floating drillship, the Kulluk, which could be used throughout the summer and early autumn months. The vessel was towed to the drill site and moored with a twelve-point anchor system capable of resisting ice forces from any direction. Ice management was usually necessary to break the ice locally around the Kulluk. This technique extended the drilling season by allowing operation earlier and later in the year. The Kulluk began operations as early as late May and continued working until late December. Activities were usually suspended because of relief well drilling restrictions, rather than limitations in the in-ice station-keeping capabilities of the Kulluk itself (Wright & Associates 2000). Table 1 shows that the Kulluk drilled in the Beaufort Sea at water depths up to 45m.





### 2.2 SPRAY ICE ISLANDS

In the late 1980s, spray ice islands were used as pads for drilling a couple of wells in the Canadian Beaufort Sea. These were deployed in the landfast ice zone, in water depths of less than 8m. The ice pads were built by spraying seawater using large pumps and nozzles to locally increase the ice thickness. This spraying normally continued until the pad rested on the seabed with sufficient freeboard and enough weight to resist the ice loads that it would incur during the drilling season. The cost of spray islands was reported to be approximately one-half the cost of gravel islands.

### 2.3 EXPLORATION RESULTS

By the mid 1980s, a number of oil and gas discoveries had been made in the Beaufort Sea. The most significant discovery was that of the Amauligak oil and gas field by Gulf. The oil and gas discoveries made in the region are described in more detail in Section 5 of this report. Despite these discoveries, by this time it had become apparent that the high expectations for the region had not been met. Unlike the Alaskan North Slope, where a small number of large prolific fields exist, the Mackenzie Delta/Beaufort Sea region was characterized by a large number of smaller widely scattered reserves, due to highly structured and fractured sedimentary strata.

#### 2.4 ARCTIC EXPLORATION AND WORLD EVENTS

In the mid 1980s, world oil prices and oil demand began to decline rapidly, thereby affecting the impetus, and available financing to undertake hydrocarbon exploration in the western Canadian Arctic. In March 1989, the Exxon Valdez ran aground in Prince William Sound, Alaska. Worldwide publicity of the spill's impacts had repercussions for hydrocarbon exploration, development and transportation throughout North America, particularly in the Beaufort Sea region.

In 1989, Imperial was granted approval to drill the Isserk I-15 well. However, in 1990 the Environmental Impact Review Board (EIRB), created under the IFA, found a lack of preparedness of the government and Gulf to deal with a major oil blowout in the Beaufort Sea. The EIRB recommended the Minister of Indian and Northern Affairs not approve Gulf's proposed Kulluk Drilling Program. Following the denial of the Kulluk drilling program, there was little exploration activity in the Mackenzie Delta or Beaufort Sea for the next decade. In 1999-2000 increasing North American gas prices led to a renewal of seismic exploration in the Mackenzie Valley and Beaufort Sea, and the drilling of several exploration wells in the Mackenzie Delta. However, Devon's Paktoa C-60 well drilled in 2005-06, which targeted natural gas and discovered a reported 240 million barrels (397  $10^6 \mathrm{m}^3$ ) of recoverable oil, has been the only Beaufort Sea offshore well drilled in the last 22 years.

### 2.5 ARCTIC OIL AND GAS PRODUCTION

Despite the billions of dollars invested in oil and gas exploration in the Canadian High Arctic, there has been there has been no significant commercial production. In 1985 Panarctic Arctic Oils Limited (Panarctic) began to tanker oil from the Bent Horn oil field (discovered in 1974 at Bent Horn N-72 on Cameron Island) to Montreal. One to three tankers of oil were shipped every summer from 1985 to 1996, with a total production from the field of 2.8 million barrels (Drummond 2005). The only oil production from the Mackenzie Delta and Beaufort Sea occurred in 1986, when Gulf shipped a demonstration tanker load of 317,000 barrels of oil from the Amauligak field to Japan (Drummond 2005). The first natural gas production from the Mackenzie Delta was in July 1999 from the Ikhil gas field (discovered by Gulf), which continues to provide local production to the town of Inuvik.

### 3. THE CYCLE OF OFFSHORE INDUSTRY ACTIVITY

The search for hydrocarbons in the Beaufort Sea is highly complex and costly due to the extreme environment, a multi-jurisdictional regulatory system, and multiple technical challenges. The extreme climate, ice conditions, long periods of darkness, and remoteness each contribute to the complexity of planning and costs of exploring for hydrocarbons in the Beaufort offshore (Erlandson et al. 2002). Stories have recently appeared in the press predicting increases in oil and gas activity in the Canadian Arctic due to the influence of Climate Change. Although, Climate Change now allows for routine vessel transit of the Northwest Passage, it is unlikely to significantly improve the Beaufort Sea operating environment for the oil and gas industry, over the relatively short timeframe of this forecast.

The document titled "Oil and Gas Approvals in the Beaufort Sea" by Erlandson et al. (2002) is part of the regulatory road map series of documents prepared for Indian Affairs and Northern Development Canada and CAPP. The road map provides a detailed outline of the regulatory framework for reviewing and authorizing oil and gas activities in the Beaufort Sea at the time of its publication. The following section provides an updated summary of the regulatory processes described in detail in the regulatory road map report.

The life cycle of an offshore project begins with a Call for Nominations followed by a Call for Bids issued by the Northern Oil and Gas Branch (NOGB) of Aboriginal Affairs and Northern Development Canada (AANDC). The successful bidders are issued ELs, which provide the exclusive right to explore for and develop hydrocarbons from a specified parcel of land during the 9-year term of the licence. Figure 8 has been revised from (Dixit 2009) to reflect the 2009 NEB update to the Canadian Oil and Gas Drilling and Production Regulations (COGDPR). It illustrates the general approval phases of the cycle of offshore industry activities. Figure 9 is revised from a figure on the NOGB of AANDC website (www.aadnc-aandc.gc.ca), also to reflect the 2009 COGDPR update. It illustrates the steps in the Northern Oil and Gas Rights Management Process.

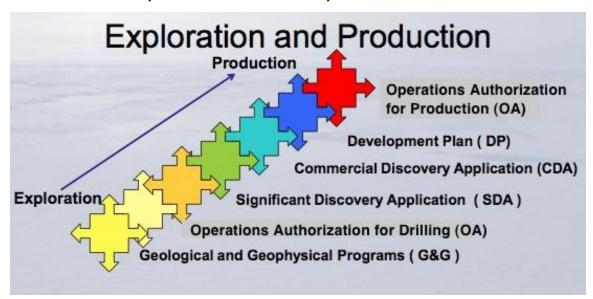
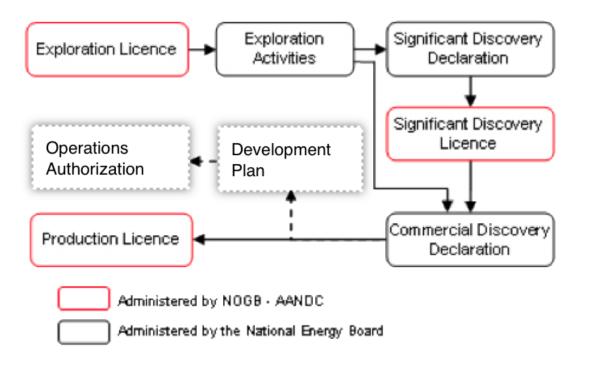




Figure 8. National Energy Board Exploration and Production Approval Phases (revised from Dixit 2009)

Figure 9. Northern Oil and Gas Rights Management Process (revised from NOGB of AANDC 2012)



### 3.1 GEOLOGICAL AND GEOPHYSICAL PROGRAMS

Seismic surveys are generally the first active exploration activity undertaken on new EL areas. They are used to gain an understanding of the regional geologic structure and to identify drilling targets. Companies wishing to conduct seismic programs must apply to the NEB for Geological/Geophysical Operation Authorizations (GOA). Consultation with local communities and other agencies having regulatory authority is critical to the approval process for all types of seismic programs. In the past several different types of seismic surveys have been conducted in the near shore areas of the Beaufort Sea. These include the use of vibroseis vehicles on the ice, drilled shotholes, airguns and geophones drilled through or placed on the ice, and ocean bottom cables with mini airguns used in open water.

In the deep-water areas of the Beaufort Sea Two Dimensional (2D) and Three Dimensional (3D) surveys are conducted by seismic vessels in generally open water conditions. The following description of deep-water seismic surveys is summarized from the report "Marine Seismic Operations" by the International Association of Geophysical Contractors (IAGC) 2002. In 2D seismic surveying, a single seismic cable or streamer is towed behind the seismic vessel, together with a single source. The reflections from the subsurface are assumed to lie directly below the 'sail line' that the seismic vessel traverses, hence the name 2D. The processing of 2D data is less sophisticated than that employed for 3D surveys. 2D lines are typically acquired several kilometers apart, on a broad grid of lines, over a large area. The method is generally used in frontier exploration areas (before 3D seismic or drilling is undertaken), to produce a general understanding of the regional geological structure. The size of a 2D survey is usually expressed in kilometers of line surveyed.

A 3D survey covers a specific area, generally with known geological targets generated by previous 2D exploration, and is usually undertaken in an EL area to better identify potential reservoirs and drilling locations. Prior to the survey, careful planning is undertaken to ensure the survey area is precisely defined. The result of the detailed planning is a map defining the survey boundaries and the direction of the survey lines. Specific acquisition parameters such as energy source, firing and receiver station intervals, together with seismic listening time, are also defined. In 3D surveying, groups of sail lines (or swathes) are acquired with the same orientation.

3D seismic sail line separation is normally on the order of 200 to 400m. By utilizing more than one source and many parallel streamers towed by the seismic vessel, the acquisition of many closely spaced sub-surface 2D lines, typically between 25 and 50m apart, can be achieved by a single sail line. A 3D survey is therefore much more efficient in that many times more data is generated than in a 2D survey. The size of a 3D survey is usually referred to in square kilometers. With the number of sail line kilometers involved, 3D surveys can take several months to complete.

High resolution seismic site surveys are carried out before a well is drilled, as there is a legal and operational need to have detailed information on the area immediately surrounding the well location and the geological layers immediately below the subsurface. The information on the nature of the seabed is needed to identify any physical hazards on the surface of the seabed and the information on the shallow subsurface is used to identify other unforeseen hazards, such as buried channels, shallow gas pockets, gas hydrates and permafrost that could cause problems if penetrated by the drill.

KAVIK-AXYS (2008) provided a hypothetical shortest duration Beaufort Sea offshore development timeline based on a review of regulatory approval processes, hypothetical development scenarios and input from industry experts. They estimate the licencing and seismic exploration phase of an offshore development to take a minimum of 3 years.

#### 3.2 DRILLING PROGRAMS

While seismic surveys can identify targets of interest, drilling is required to confirm the presence or absence of hydrocarbons. An NEB Operations Authorization (OA) is required to undertake drilling operations for petroleum resources in the offshore area as required by the Canada Oil and Gas Operations Act (COGOA). In addition, individual well approvals from the NEB are required to drill a well (ADW) or to alter the condition of a well (ACW). Prior to the NEB issuing an OA, environmental screening must be completed under the IFA, the Canadian Environmental Assessment Act (CEAA), and COGOA. Further, the Applicant would need to demonstrate financial responsibility to the satisfaction of the NEB, and the NEB needs to have notification that a Benefits Plan prepared by the Applicant has been approved by AANDC or the requirement for it waived.

KAVIK-AXYS (2008) estimated the exploration and delineation-drilling phase of a Beaufort Sea offshore development to take a minimum of 3 years. However, since a single offshore deep-water well may take 3 years to drill, this phase of an offshore development may be considerably longer.

# 3.3 SIGNIFICANT DISCOVERY AND COMMERCIAL DISCOVERY APPLICATIONS

If an exploration well results in the discovery of hydrocarbons the Operator can make an application to the NEB for a Significant Discovery Declaration (SDD). The NEB may, by order, make a SDD in relation to those frontier lands in respect of which, there are reasonable grounds to believe the Significant Discovery may extend.

The Applicant can then seek a Significant Discovery Licence (SDL) from the NOGB of AANDC, which would extend the Applicant's rights to areas identified in the SDD without any time limit.

Additional delineation wells and 3D seismic may be needed to determine if a discovered hydrocarbon resource is sufficiently large to warrant production. An Operator that can demonstrate to the NEB that the sought area contains petroleum reserves that justify the investment of capital and effort to bring the discovery to production can submit an application for a Commercial Discovery Declaration (CDD). The NEB may, by order, make a CDD in relation to those frontier lands in respect of which there are reasonable grounds to believe the Commercial Discovery may extend.

### 3.4 DEVELOPMENT PLANS AND OPERATION AUTHORIZATIONS

An SDL does not expire, it can be held for many years, before conditions are favorable enough to justify the costs and risks involved in attempting to produce hydrocarbons. To date, other than the three limited examples described in Section 2.5 there has been no commercial production of hydrocarbons from the Mackenzie Delta, Beaufort Sea and/or Canada's Arctic Islands. It is difficult to predict the timing and amount of work involved in progressing a project through to production. Although, the specific timing of each activity will vary depending on the type and scale of individual projects, it is expected that at a minimum the activities listed in Table 2 would be required in order for the NEB to consider a Development Plan Approval (DPA) application and issue a DPA. The DPA is subject to Governor-in-Council consent, and Operations Authorizations (OA) for activities included in the DPA. Finally, once a CDD has been made by the NEB, the NOGB of AANDC may issue a Production Licence that would enable the Operator to sell the produced oil and gas, make royalty payments, and profits.

### 3.5 COMMERCIAL DISCOVERY DEVELOPMENT TIMELINE

The timeline for an offshore development project is controlled by the time required to work through each stage of the development process and complete the types of activities illustrated in Table 2. The larger and more complex the development project, the longer the timelines will be extended. Please note that the time lines illustrated in Table 2 are estimated by the author and are not endorsed by AANDC or any other Regulatory Authority (RA).

It is normal practice for the Operator to reduce the overall development schedule by undertaking activities concurrently, however, some activities such as regulatory hearings and authorizations or approvals must be completed prior to undertaking physical works. Since activities like detailed engineering and procurement are not normally initiated prior to receiving regulatory approvals Table 2 only assumes, in the author's estimation, a 30% reduction in the median development timeframe resulting from work activities being conducted concurrently.

Table 2. Activities and Estimated Time Schedule for a Generalized Beaufort Sea Offshore Development Project

| Activity                                                              | Estimated Timing |
|-----------------------------------------------------------------------|------------------|
| Reserves Assessment                                                   |                  |
| Market Assessment                                                     |                  |
| Conceptual Engineering                                                |                  |
| Economic Modeling                                                     |                  |
| Budgeting                                                             |                  |
| Assessment of Regulatory Environment                                  |                  |
| Feasibility Study                                                     | 0.5 - 1.5 years  |
| Reservoir Engineering                                                 |                  |
| Drilling and Completions Engineering                                  |                  |
| Cost and Schedule Engineering                                         |                  |
| Public and Regulatory Consultation                                    | 0.5 - 1.5 years  |
| Environmental Fieldwork                                               |                  |
| Engineering Fieldwork                                                 | 1 - 3 years      |
| Construction Engineering Design                                       |                  |
| Business and Economics Analysis                                       |                  |
| Development Plan                                                      |                  |
| Environmental Impact Assessment                                       |                  |
| Socio-economic Impact Assessment                                      |                  |
| Decommissioning and Abandonment Plan                                  | 1 - 2 years      |
| Public Regulatory Review Processes                                    |                  |
| Regulatory Approvals                                                  |                  |
| Permitting                                                            | 2 - 5 years      |
| Detailed Design                                                       |                  |
| Procurement and Construction of Infrastructure                        |                  |
| Development Drilling                                                  |                  |
| Procurement and Construction of Facilities                            |                  |
| Facility Start-up/Commissioning                                       | 5 - 7 years      |
|                                                                       |                  |
| TOTAL Median Estimated Development                                    |                  |
| Timeframe                                                             | 14 years         |
| TOTAL F. (I I. D                                                      |                  |
| TOTAL Estimated Development Timeframe Reduced 30% for Concurrent Work | 10 years         |

# 3.6 OPERATIONS AUTHORIZATIONS FOR DECOMMISSIONING AND ABANDONMENT

The final phase of the project life cycle is decommissioning and abandonment. As indicated in Table 2, an initial Decommissioning and Abandonment Plan is required before regulatory approvals to construct are issued. This plan includes decommissioning of installations, abandonment of fields and abandonment of wells. Specific facility and well abandonments may be undertaken several times during the operating life of an oil or gas development. At the end of a project life cycle, once the requirements of all other Regulatory Authorities (RAs) have been met, an Operator can apply to the NEB for a final OA for decommissioning and abandonment. However, the Operator continues to be accountable and responsible for a well, even after abandonment, and may be required to carry out remediation work should a well later be discovered to be leaking or require other maintenance.

### 3.7 POTENTIAL FUTURE OIL AND GAS EXPLORATION AND DEVELOPMENT ACTIVITIES

Table 3 was prepared by CAPP, for the Beaufort Sea Strategic Regional Plan of Action (BSStRPA) 2008 report, it identifies potential future oil and gas exploration and development activities in the Canadian Beaufort Sea. It is the most recent description of potential oil and gas activities available. In addition, to the description in Table 3 of offshore drilling support vessels required in the drilling of a deep water Beaufort Sea exploration well. Although no OA for drilling deep slope Beaufort Sea exploration wells have been applied for, industry planning has advanced to the point where it expects that the following support vessels would likely be needed:

- 2 or 3 icebreakers would stay on location at the wellsite,
- 2 or 3 supply vessels would make trips back and forth to a shore base,
- 1 possible wareship would stay on location, replacing 1 supply vessel
- and 1 fuel tanker would stay on location throughout the drilling operation.

BREA researchers should consider these drilling support vessels along with the industry activities described in Table 3, when attempting to identify and fill regional information and data gaps related to offshore oil and gas exploration and development.

Table 3. Potential Future Oil and Gas Exploration and Development Activities (from BSStRPA 2008)

| Activity                                                                                | Details                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 2D and 3D Seismic – near<br>shore                                                       | <ul> <li>Vibroseis vehicles on ice which must be frozen to the bottom</li> <li>Airguns and geophones drilled through the ice in &lt;20m water depth, one airgun or receiver per hole</li> <li>Shot holes drilled through the ice in &lt;20m water depth with charge size limited by Department of Fisheries and Oceans pressure restrictions</li> <li>Ocean bottom cables with mini airguns used during open water season in &lt;70m water depths</li> </ul> |  |  |
| 2D and 3D offshore seismic - deep water                                                 | <ul> <li>Seismic vessels using airgun arrays and streamers during the<br/>open water season in &gt;20m water depths</li> </ul>                                                                                                                                                                                                                                                                                                                               |  |  |
| Wellsite surveys                                                                        | High resolution seismic and geotechnical surveys                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| Exploration drilling - landfast ice zone                                                | <ul> <li>Drilling from spray ice pads grounded in &lt;15m water depths</li> <li>Drilling from spray ice pads floating in &gt;15m water depth within the land fast ice zone</li> <li>Construction of ice roads to shore</li> </ul>                                                                                                                                                                                                                            |  |  |
| Offshore exploration drilling -<br>shallow water zone (including<br>land fast ice zone) | <ul> <li>Drilling from gravel or sand islands in &lt;20m water depth with a surface blowout preventer (BOP) and up to 12 month season</li> <li>Drilling from gravity based structures (GBS) like the Caisson Retained Island (CRI), or the Concrete Island Drilling System (CIDS) in &lt;20m water depth with a surface BOP and a 12 month season</li> </ul>                                                                                                 |  |  |
| Offshore exploration drilling - deep water zone                                         | <ul> <li>Drilling from GBS like the Steel Drilling Caisson (SDC) or the Molikpaq in &gt;10m to &lt;40m water depths, with a surface BOP and up to 12 month season</li> <li>Drilling from floating drill ships like the Kulluk in &gt;15m water depths with a subsea BOP and a 3-6 month season</li> </ul>                                                                                                                                                    |  |  |
| Offshore drilling support                                                               | <ul> <li>Small and heavy lift helicopters</li> <li>Supply vessels and barges</li> <li>Ice breakers for towing, anchor handling, and ice management</li> <li>Spill response vessels and equipment</li> <li>Marine maintenance facilities (i.e. floating drydocks)</li> </ul>                                                                                                                                                                                  |  |  |
| Offshore development -<br>shallow water zone                                            | Gravel islands in <20m water depths     Causeways or subsea pipelines to shore                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| Offshore development -<br>shallow water zone                                            | <ul> <li>A GBS in &lt;60m water depths</li> <li>The GBS may need an ocean bottom excavation and sand or gravel foundation</li> <li>Directionally drilled production wells from GBS</li> <li>Subsea pipelines to shore</li> </ul>                                                                                                                                                                                                                             |  |  |

Table 3. Potential Future Oil and Gas Exploration and Development Activities (from BSStRPA 2008)(cont.)

| Activity                                                                             | Details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Offshore development - deep water zone                                               | <ul> <li>floating development drilling</li> <li>subsea wells and satellite well clusters in &gt;60m water depths with subsea gathering lines</li> <li>subsea pipelines to onshore processing facilities</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Offshore development - deep water zone                                               | <ul> <li>floating development drilling</li> <li>subsea wells and satellite well clusters in &gt;60m water depths with subsea gathering pipelines to the GBS which is located in &lt;60m water depths and</li> <li>subsea pipelines to shore or</li> <li>crude oil storage on the GBS, with ice breaking crude oil tanker off take</li> </ul>                                                                                                                                                                                                                                                                                                                        |
| Offshore development - deep water zone                                               | <ul> <li>floating development drilling</li> <li>subsea wells and satellite well clusters in &gt;60m water depths with subsea gathering pipelines to the GBS which is located in &lt;60m water depths and</li> <li>subsea pipelines to shore with;</li> <li>Liquified Natural Gas (LNG) facility onshore, and ice breaking LNG tanker off take</li> </ul>                                                                                                                                                                                                                                                                                                            |
| Subsea oil, gas and Natural<br>Gas Liquids gathering and<br>transportation pipelines | <ul> <li>Dredging, pipe laying, hydro testing, backfilling of trenches</li> <li>Pipeline landfalls either trenched onto shore or directionally drilled from shore</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Offshore production support                                                          | <ul> <li>Small and heavy lift helicopters</li> <li>Icebreakers for ice management</li> <li>Supply vessels, with oil spill response capability and barges</li> <li>Marine Maintenance Facilities (i.e. floating dry docks) and other repair shops</li> <li>Floating well workover, wireline and other well servicing equipment</li> <li>Marine and logistics bases, including diesel storage and storage for oil spill equipment</li> <li>Helicopter support bases</li> <li>Camps with offices, control room and medical facilities</li> <li>Multiple storage and warehousing facilities for companies providing drilling and production support services</li> </ul> |
| Inspections                                                                          | <ul> <li>Subsea Remote Operated Vehicle (ROV) inspections of pipelines, the GBS and subsea satellites</li> <li>Subsea multi-beam and side scanning sonar inspections of pipelines, the GBS and subsea satellites</li> <li>Diver inspections of pipelines, GBS and subsea satellites</li> </ul>                                                                                                                                                                                                                                                                                                                                                                      |
| Abandonment activities                                                               | This area is uncertain at this time. Abandonment and reclamation are regulated and industry will work with regulators to develop appropriate plans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

### 4. PREDICTED BEAUFORT SEA OIL AND GAS ACTIVITY

Several attempts have been made historically to predict the type, scale and timing of future Beaufort Sea oil and gas exploration and development. These include: Beaufort Environmental Monitoring Project (1988); Beaufort Region Environmental Assessment and Monitoring Program (1995); Gilbert, Laustsen, Jung Associated Ltd. (2004); the Mackenzie Gas Project (2005); and the Breakwater Group (2006) which all provide hypothetical development scenarios. In addition, the Beaufort Sea Strategic Regional Plan of Action (BSStRPA 2008) appendices contain a potential oil and gas development scenario largely drawn from the work by Morrell (2005, 2007). The INAC (2007) submission to the Joint Review Panel for the Mackenzie Gas Project (MGP) titled "Towards a View of Future Oil and Gas Development in the Mackenzie Valley, Delta and the Beaufort Sea" expands on Morrell's earlier work. Finally, CAPP provided a presentation titled "Potential Oil and Gas Activities in the Beaufort Sea to the National Energy Board Offshore Drilling Review", Inuvik Roundtable Sept. 12-16, 2011.

Peterson et al. 2003 describes forecasts as a "best estimate of future conditions from a particular model, method, or individual." He goes on to state the "public and decision makers generally understand that a forecast may or may not turn out to be true." Given that changing future conditions are a near certainty, this oil and gas activity forecast, is intended to describe a plausible future based on current assumptions. However, it is important to recognize that there are numerous ever-changing factors, which may significantly alter this forecast at any time.

In an attempt to try and develop a plausible current forecast of potential oil and gas activity in the Beaufort Sea, company representatives working on exploration and development projects in the area were interviewed. Those companies known to be considering or currently undertaking exploration and/or development planning in the Beaufort Sea were asked to describe their current plans for activity. The author used this information in developing an industry-wide overview of potential oil and gas exploration and development activities over the next 15 years. The report also provides a description of the oil and gas exploration and development activity cycle, which will apply to industry activities expected to occur over the long term. That is, the expected life cycle of those activities initiated during the next 15 years, is described to provide an indication of how these developments may build out to full scale and eventually be decommissioned. Any prediction of oil and gas exploration and development activities in Beaufort Sea over a 15 years period, will necessarily have a large margin for error. Therefore, the longer-term project life cycle predictions included in the report are only general and based on industry experience.

### 4.1 ASSUMPTIONS

### 4.1.1 Factors in Development of Assumptions

There are numerous regulatory, technical and economic factors, which may have a significant impact on the type and level of oil and gas activities that will occur in the Canadian Beaufort Sea over the next 15 years. BREA industry committee members identified the following key factors for this report:

- The NEB report and filing requirements, resulting from the Public Review of Arctic Offshore Drilling have the potential to affect the type and level of oil and gas industry activity in the Beaufort Sea. Industry representatives expressed concern that the NEB Same Season Relief Well Policy could significantly impair exploration of the deeper waters of the Beaufort Sea. The same-season relief well capability requirements have been in place since the 1970s and the NEB in re-affirming the policy, provided the context and intent of the policy, and articulated the policy in its report and companion Filing Requirements. However, the NEB's requirement that any company applying for an offshore drilling authorization, "demonstrate how they would meet or exceed the intended outcome of our policy" (NEB 2011a,b), is expected to create regulatory and financial uncertainty as industry attempts to address the policy. This will likely increase the timelines for application preparation and regulatory review.
- EL holders have delayed filing offshore drilling applications, while they participated in the NEB Public Review of Arctic Offshore Drilling, and awaited guidance to be issued by the Board pursuant to its review. Such delays are expected to result in some current offshore EL holders seeking extensions to the timelines for their exploration work commitments.
- Industry representatives indicate that one or more built-for-purpose or retrofitted Arctic class drillships will need to be commissioned for drilling offshore in the Beaufort Sea deep slope areas. Imperial Oil Resources Ventures Limited (IORVL) in its submission to the NEB titled "Submission Regarding the Relief Well Policy for Offshore Drilling in the Arctic, March 2010" states that existing floating drilling rigs are unsuitable for operating in the deep ice-infested waters of the Beaufort Sea. Their preliminary plans included the construction of a new purpose built Det Norske Veritas Polar Class 4 drillship. The ordering of an Arctic class drillship is unlikely to occur until the NEB has issued an OA for drilling. Based on industry experience, the actual design, construction and commissioning of a purpose built drillship will take 3 to 4 years. The Stena Drill-Max Ice reported to be the world's first Arctic ice class, dual mast, ultra deepwater drillship was ordered in 2008 and is scheduled for delivery in 2012.

- Increases in North American shale gas production have caused natural gas unit prices to tumble from more than US \$8 per mcf in 2008 to about US \$4 last year, with current spot prices even lower at between US \$2 and \$3. Natural gas prices remaining at current levels would likely render Arctic gas production uneconomic. Although, exploration in the deep shelf and slope areas of the Beaufort Sea is not dependent on the MGP, should MGP not proceed on the proposed project schedule, industry exploration and development activities in the Beaufort Sea are expected to focus more on oil than natural gas.
- The existing offshore significant discoveries, located in less than 100m water depths, are believed to represent the best near term development opportunities in the Beaufort Sea
- Although, current oil prices appear to be moving towards historical highs, global
  economic instability threatens to reverse this trend. This combined with high costs
  and industry uncertainty, as to how equivalency to the NEB Same Season Relief Well
  Policy can be achieved, may result in shifts in corporate exploration and development
  expenditures away from the Beaufort Sea. However, a sustained global economic
  recovery with accompanying increases in oil prices would encourage exploration and
  development.

Although the above list of factors is not exhaustive, in the author's opinion it does appear that negative factors currently outnumber positive factors for overall oil and gas activity in the Beaufort Sea. Hence, the overall outlook at this time is somewhat pessimistic. However, history has clearly shown that factors affecting the outlook for oil and gas activity in the Beaufort Sea change dramatically over relatively short timeframes. Therefore, if this forecast is to be relied upon for future planning, it should be revisited on a regular basis to ensure the underlying assumptions remain valid.

### 4.1.2 Base Assumptions

Regarding the above factors identified as potentially affecting oil and gas activity in the Beaufort Sea, this report assumes the following:

• Holders of existing deepwater ELs have indicated their intention to pursue drilling applications based on pre-engineered drilling systems with demonstrated equivalency to the NEB Same Season Relief Well Policy. The first Applicant attempting to demonstrate equivalency to this policy faces regulatory uncertainty and a likely extended regulatory review. Therefore, the author assumes it will take an additional 2 or 3 years for the preparation and regulatory review of the first offshore drilling application, purporting to meet or exceed the intent of the policy.

- Holders of current ELs, which were issued prior to the start of the NEB Public Review of Arctic Offshore Drilling, are assumed to be granted 2 to 3 years of relief on the term of their ELs. This is expected to result from delays in the preparation of applications while industry participated in the Public Review, and the time needed to evaluate the new NEB filing requirements.
- One or more purpose-built or retrofitted Arctic class drillships are expected to be commissioned to drill deep shelf and deep slope wells in the Beaufort Sea. This report assumes that it will take 3 to 4 years to design and construct a purpose built drillship once the NEB issues an OA. The timeline for retrofitting an existing drillship to meet Arctic drilling requirements is unknown, and is assumed to be similar to that for constructing a new drillship.
- Although, North American tight gas production is expected to keep natural gas prices low over the report timeframe, the MGP is assumed to proceed on a slightly delayed timeline with production starting in 2018.
- The existing Beaufort Sea significant discoveries are assumed to provide the most likely near term development opportunities.
- Low natural gas prices, and regulatory uncertainty are predicted to reduce the number
  of industry nominations and bids for Beaufort Sea ELs over the 15-year timeframe of
  this report. Based on current conditions, the author assumes that few new ELs with
  first well drilling commitments within the report timeframe will be sought for the
  Beaufort Sea. However, continuing high oil prices could partially offset this effect.

### 4.2 PREDICTED INDUSTRY ACTIVITY

Previous predictions of oil and gas activity in the Beaufort Sea by GLJ (2004), MGP (2005), Morrell (2005, 2007), and the Headwater Group (2006) have generally taken the view that induced natural gas development from the MGP, will dominate early exploration and development in the Beaufort Sea. This early activity was expected to focus on the Listric Fault play illustrated in Figure 10 from BSStRPA (2008) and include the Issungnak-Amauligak and Netserk-Kadluk-Minuk significant discovery areas with new exploration focused on expanding the discovered gas resource near these discoveries.

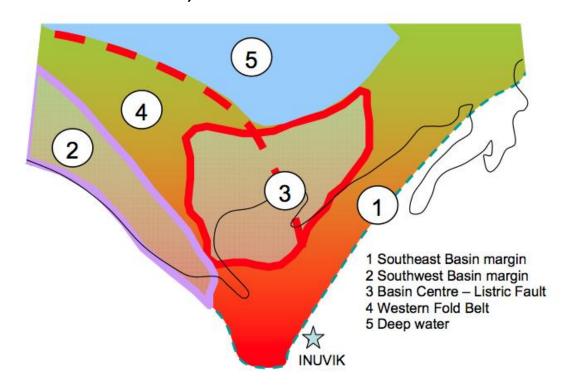



Figure 10. Mackenzie Delta and Beaufort Sea Basin Geology (from BSStRPA 2008)

Amauligak is the largest oil and gas discovery in the offshore; its size and proximity to shore suggest that it would likely be part of any initial offshore development proposal. As Morrell (2007) notes, offshore oil production does not necessarily require the offshore expansion of a gas pipeline network from onshore. He also notes that high oil prices could encourage oil exploration and possibly development in the Beaufort Sea continental margin. North American gas prices have declined during the last few years, and oil prices have risen dramatically. These price changes have the potential to shift the focus of offshore activity in the Beaufort Sea from MGP-induced gas exploration and development to oil exploration and development.

Morrell (2007) also recognized that there are large offshore areas of the Beaufort, which are sparsely explored and have the potential for major oil and gas discoveries. Since most of the large near shore structures have experienced some exploration, any new major discoveries will likely be in deeper water offshore. Morrell also foresaw the possibility that large international companies could become interested in exploring the deeper offshore Beaufort Sea, through their continual evaluation of opportunities in their worldwide portfolios. The recent awarding of high value ELs for deep slope areas of the Beaufort Sea, has proven Morrell's predictions to be accurate.

One indicator of future exploration activity in the Beaufort Sea is the number of current ELs and the financial and well drilling commitments they contain. Figure 11 from AANDC (2011), shows the locations of ELs, SDLs and other features in the Mackenzie Delta and Beaufort Sea. Table 3 shows the dates the current Beaufort Sea ELs were issued, the work bid amounts, the dates wells are to be drilled, and the year each EL expires, if a well is not drilled and work commitments not met.

Mer de Beaufort EL453 0 EL317 ritories Northwest erritoires du

Figure 11. Current Exploration Licences and Significant Discovery Areas Map (from AANDC 2011)

Note: Extended Legend on next page

Figure 11. Map Legend (cont.)

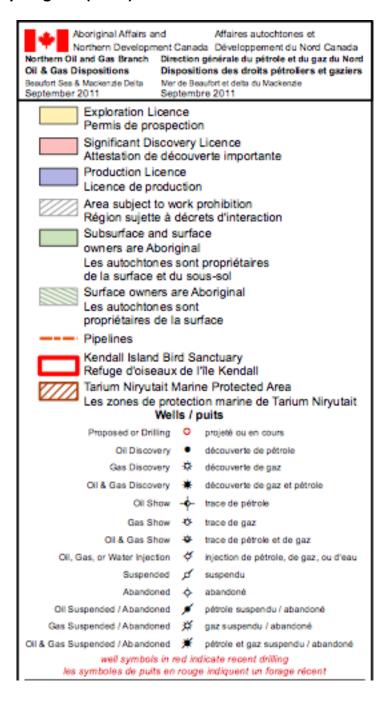



Table 4. Current Beaufort Sea Exploration Licences

| Licence | Area<br>(ha) | Representative <sup>1</sup>                   | Issue<br>Date   | Well to<br>be Drilled<br>by <sup>2</sup> | Expiry<br>Date  | Work Bid<br>Amount (\$) |
|---------|--------------|-----------------------------------------------|-----------------|------------------------------------------|-----------------|-------------------------|
| EL446   | 205,321      | Imperial Oil<br>Resources<br>Ventures Limited | 01-Oct-<br>2007 | 30-Sep-<br>2012                          | 30-Sep-<br>2016 | 585,000,000             |
| EL447   | 103,711      | ConocoPhillips<br>Canada<br>Resources Corp.   | 01-Sep-<br>2007 | 31-Aug-<br>2012                          | 31 Aug-<br>2016 | 12,084,131              |
| EL448   | 108,185      | Chevron Canada<br>Limited                     | 31-Dec-<br>2007 | 30-Dec-<br>2012                          | 30-Dec-<br>2016 | 1,010,100               |
| EL449   | 202,380      | Imperial Oil<br>Resources<br>Ventures Limited | 01-Dec-<br>2008 | 30-Nov-<br>2013                          | 30-Nov-<br>2017 | 1,180,100,000           |
| EL451   | 205,359      | BP Exploration Company Ltd.                   | 01-Dec-<br>2008 | 30-Nov-<br>2013                          | 30-Nov-<br>2017 | 15,100,000              |
| EL452   | 196,497      | ConocoPhillips<br>Canada<br>Resources Corp.   | 01-Dec-<br>2008 | 30-Nov-<br>2013                          | 30-Nov-<br>2017 | 2,543,896               |
| EL453   | 203,635      | BP Exploration Company Ltd.                   | 01-Dec-<br>2008 | 30-Nov-<br>2013                          | 30-Nov-<br>2017 | 1,100,000               |
| EL460   | 205,946      | Chevron Canada<br>Limited                     | 05-Jan-<br>2011 | 04-Jan-<br>2016                          | 04-Jan-<br>2020 | 103,300,000             |
| EL464   | 90,381       | Arctic Energy and Minerals Limited            | Sept-<br>2011   | Aug-<br>2016                             | Aug-<br>2020    | 1,000,000               |
| EL465   | 120,314      | Arctic Energy and Minerals Limited            | Sept-<br>2011   | Aug-<br>2016                             | Aug-<br>2020    | 1,000,000               |

### Notes:

- 1. Representative as prepared by AANDC as of Dec. 31, 2010 with EL464 and EL465 added.
- 2. Per the original licence, Period 1 may be extended using drilling deposits or through amendment to the licence. The drilling of one exploratory or delineation well prior to the end of Period 1 of the term is a condition precedent to obtaining tenure to Period 2.

### 4.2.1 Seismic Surveys

Since 2006, one or two large 2D seismic surveys have been conducted each year in the Beaufort Sea. Third party seismic companies that conduct both speculative and contracted seismic surveys normally carry out these large surveys. Recent surveys have focused on the Beaufort deep slope areas, the central Beaufort Sea, the areas West of Banks Island, and the Tuktoyaktuk Peninsula, and to a lesser extent the Western Beaufort Sea. In addition, 3D seismic surveys were carried out in 2008 by IORVL on EL446, and in 2009 by BP on EL449.

Industry geologists evaluate the prospectivity of new exploration regions and decide where to carry out seismic surveys using, a combination of available information, analogues from similar basins, geological models and professional judgement. Without having access to these confidential industry assessments of regions in the Beaufort Sea, future seismic exploration is very difficult to predict. Since several large 2D surveys have been conducted in the Beaufort Sea in the last few years, the size and frequency of these surveys over the next 15 years is likely to decrease. In any specific year one or two 2D seismic surveys of varying sizes are expected to be conducted in the Beaufort Sea. A 2D seismic program (approximately 400 km) by Arctic Energy and Minerals Limited is currently being considered for the shallow shelf area of the Beaufort Sea during the summer of 2012. Additional 2D seismic surveys are likely to be conducted in other unexplored areas as well.

The number of future 3D surveys can be expected to closely track the number of offshore wells drilled. Due to the high cost of offshore wells, 3D surveys are now routinely conducted on each EL a few years prior to drilling. Chevron is planning a 3D survey on EL460 for the summer of 2012, and Arctic Energy and Minerals Limited is considering an on-ice 3D survey in the shallow shelf area of the Beaufort Sea during the winter of 2012/2013. High-resolution wellsite seismic surveys will also be conducted to map the sea bottom surface and near subsurface prior to spudding all offshore wells.

### 4.2.2 Deep Shelf and Slope Beaufort Sea Wells

Figure 11 illustrates that 6 of the ELs issued since 2007 extend into the deep slope (>100m) areas of the Beaufort Sea, while the remaining 4 recently issued ELs are located in shallower waters. It appears that the majority of current exploration interest is in the deeper offshore, with less interest in the shallower waters of the Listric Fault play. This is contrary to previous predictions of oil and gas activity in the Beaufort and may be reflective of higher prospectivity in the deep shelf and slope waters.

The existing ELs call for 6 wells to be drilled in the deeper offshore Beaufort Sea between 2012 and 2016. As indicated above, it is assumed that holders of those ELs issued prior to the NEB Public Review of Offshore Drilling, will likely be granted a 2 to 3 year extension to their ELs, which will affect the timing of their drilling commitments. This would mean that these 6 deep offshore wells should be drilled between 2014 and approximately 2018, which seem unlikely for the following reasons.

As indicated earlier, industry expects that only one or two built-for-purpose or retrofitted Arctic class drillships will be acquired to drill deep slope wells (>100m) in the Beaufort Sea. In the recent past, it has taken 4 years to design and construct similar drillships and industry has indicated that the trigger to commission a new or retrofitted drillship is an OA. Since it has already been assumed, to take an additional 2 years for the preparation and regulatory review of the first offshore drilling application proposing to meet or exceed the intent of the NEB Same Season Relief Well Policy, it follows that the first offshore deep-water well is unlikely to be spudded before 2018.

Further, given the extremely high cost for a new Arctic class drillship and support icebreakers, industry representatives indicate that only 1 or 2 drillships and icebreaker drilling systems are likely to be acquired for use in the Beaufort Sea over the next 15 years. Currently under construction, the Stena Drill-Max Ice, is estimated to cost \$1,065 Billion USD, and will be the most expensive drillship ever built. The extremely high cost of similar drillships and their accompanying icebreakers, makes it unlikely that two companies would concurrently decide to acquire such vessels for use in the Beaufort Sea. A more likely scenario is that the first drilling system would be acquired and a successful deep-water well drilled, before a second drillship and its icebreakers are commissioned.



Figure 12. Stena Drill-Max Ice Drillship (source Det Norske Veritas)

IORVL in their submission to the NEB titled "Submission Regarding the Relief Well Policy for Offshore Drilling in the Arctic, March 2010" states that it will likely take 3 drilling seasons to drill and test a deep-water well at Ajurak (EL446). Therefore, if a new or retrofitted Arctic class drillship initiates drilling in 2018 and completes drilling the first successful deep slope Beaufort Sea well in 2021, a second drillship and its icebreakers may be commissioned and ready to start deep-water drilling by 2025. However, the timeframe for a second deep-water drillship to start drilling in the Beaufort may be significantly extended should the first deep slope well prove to be dry.

### 4.2.3 Shallow Beaufort Shelf Wells

Table 4 indicates that ELs 447, 448, 464 and 465, which have water depths less than 100m, are to be drilled between 2012 and 2016. Given the assumption of a minimum 2 years extension to the drilling requirements for ELs 447 and 448, the first of these wells would be expected to spud in 2014. This timeline also appears unlikely for the following reasons.

There are currently no suitable drilling platforms for these shallow wells located in the Canadian Beaufort Sea. Thus either an existing Arctic drilling platform will have to be brought into the Beaufort Sea from another jurisdiction, or a new shallow water Arctic drilling platform will have to be commissioned. Due to the scarcity and high cost of such Arctic drilling platforms, it is again expected that only 1 or 2 will be used in the Beaufort Sea during the timeframe of this report. If a suitable Arctic drilling platform can be located and transported to the Beaufort Sea, this could be accomplished faster than commissioning a new one. Therefore, it is predicted that the first shallow water drilling platform will commence operations by 2016, with a second commencing drilling in 2017 or 2018.

As history has shown, shallow water Beaufort Sea wells could be drilled from artificial islands, caisson structures or spray ice islands. However, the timeframe for drilling a well using one of these drilling platforms, is unlikely to be much before 2016 as industry has indicated that no AO applications to do so are currently being considered.

While ELs suggest that the next shallow water Beaufort Sea exploration well could commence drilling in 2016, the main expected impetus for drilling these wells is induced natural gas exploration from the MGP. Although it is difficult to predict the future of MGP, this report assumes that MGP will start production in 2018. Figure 13 indicates that this is 8 years after MGP start-up was originally scheduled. MGP also indicated that it would take a further 2 years after start-up for the infrastructure to be installed to allow for offshore Beaufort Sea production to be tied-in.

Figures 13 and 14 from the MGP "Environmental Impact Statement Additional Information Report, March 2005" show a possible sequence of tie-ins for Mackenzie Delta and Beaufort Sea existing significant discoveries and potential new discoveries. Although this is a simplistic scenario, it indicates that 11 onshore and 10 offshore existing significant discoveries could potentially be tied in, before any new offshore discoveries are added to the system. Figure 14 shows the first new offshore discovery being tied in approximately 17 years after MGP start-up. Therefore, allowing 3 years for drilling and tie-ins, it appears there will be little incentive for MGP induced gas exploration to occur before 2032. The combination of low natural gas prices and little MGP induced natural gas exploration over the next 20 years, means few if any, Listric Fault or Basin Margin exploration gas wells are likely to be drilled during the timeframe of this report. This reflects the lack of economic incentives to increase gas reserves in the vicinity of existing discovered fields.

One potential driver for shallow Beaufort Sea exploration is ongoing high oil prices, which may provide sufficient incentive for oil exploration and possibly production

drilling during the next 15 years. This drilling would rely on the same types of shallow water (<100m) arctic drilling platforms discussed earlier. Therefore, even though little incentive to drill Listric Fault or Basin Margin gas wells is anticipated during the report period, the potential exists for shallow water oil exploration to begin when appropriate drilling platforms become available. As indicated earlier suitable drilling platforms could be available in the Canadian Beaufort Sea by 2016. Therefore, it is reasonable to assume that 1 or 2 shallow water drilling platforms will be operation in the Beaufort Sea from 2016 on.

As mentioned earlier, a Beaufort Sea oil development on one of the existing shallow water SDLs could be possible within the report timeframe. Such a development would require several years to determine its feasibility, then plan and receive regulatory approval. It is possible; assuming favorable economic conditions and a reasonable regulatory approval time, that a shallow Beaufort Sea development could begin production related drilling and construction activities by 2020. Consistent with this assessment, ConocoPhillips Canada recently announced that it is moving into a three-year study to evaluate if commercial development of the Amauligak field is feasible, and if so, to identify an appropriate development concept. At this early stage of planning, no further details are available from the company.



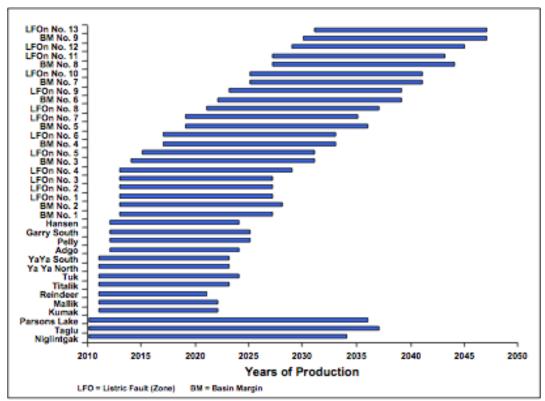
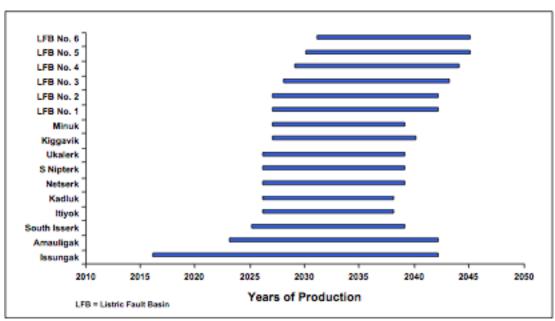




Figure 14. Scenario Assumptions for Years of Production per Field for the Beaufort Sea (from MGP 2005)



### 4.2.4 Short- to Medium-Term Oil and Gas Activity Forecast

Table 5 provides a summary of the oil and gas activity predicted to occur in the Beaufort Sea over the next 15 years. This table should be used in conjunction with Table 3, which provides descriptions of these activities and the facilities, vessels and infrastructure needed to carry them out.

Table 5. Summary of Offshore Oil and Gas Activity 2012-2027

| Activity                               | Predicted Timing or Intensity                |
|----------------------------------------|----------------------------------------------|
| 2D Seismic Surveys                     | - sporadic 1 or 2 per year                   |
| 3D Seismic Surveys                     | - on each EL a few years prior to drilling   |
| Wellsite Seismic Surveys               | - prior to spudding each well                |
| Mackenzie Gas Project                  | - start-up 2018                              |
| Discovered Offshore Gas tie-ins to MGP | - first tie-in 2025, 1 or 2 per year after   |
| Shallow Shelf Exploration Wells        | - one or two per year starting in 2016       |
| Deep Shelf and Slope Exploration Wells | - first well 2018, next wells 2021 and 2025  |
| Shallow Shelf Oil Production           | - first potential drilling/construction 2020 |

### 4.2.5 Longer Term Oil and Gas Activity

The predicted short- to medium-term oil and gas exploration and development activities over the next 15 years in the Beaufort Sea, have a large margin for error. Therefore, longer-term project life cycle predictions can only be general and based on industry experience. Table 3 from BSStRPA(2008) provides the most current industry description of potential future oil and gas exploration and development activities for the Canadian Beaufort Sea, while Figure 15 illustrates the types of drilling platforms predicted to be used in exploring and developing the shallow slope, deep shelf and slope areas of the Beaufort Sea.

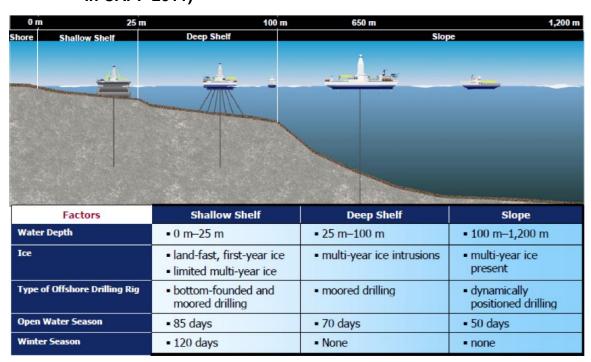



Figure 15. Typical Drilling Platforms in the Beaufort Sea (from Imperial Oil in CAPP 2011)

As indicated, previous predictions of oil and gas activity in the Beaufort Sea have generally taken the view that induced natural gas development from the MGP will dominate early exploration and development in the Beaufort Sea. Figure 16 is a simplistic depiction of how this pattern of development may proceed in the longer term. However, as indicated earlier, low natural gas prices appear to be shifting the focus of industry development activities in the Beaufort Sea to oil rather than natural gas.

The existing offshore significant discoveries, which are all located in less than 100m water depths, are believed to represent the best near term development opportunities in the Beaufort Sea. If oil development should proceed in the Beaufort Sea, it would not necessarily require the offshore expansion of a pipeline network from the onshore. Offshore oil production could occur using subsea pipelines to shore, Gravity Based Structures (GBS) or Floating Production Storage and Offloading (FPSO) facilities. Since no industry plans for offshore oil production in the Beaufort Sea are currently available, it is impossible to predict, which if any, of these oil production systems may be used.

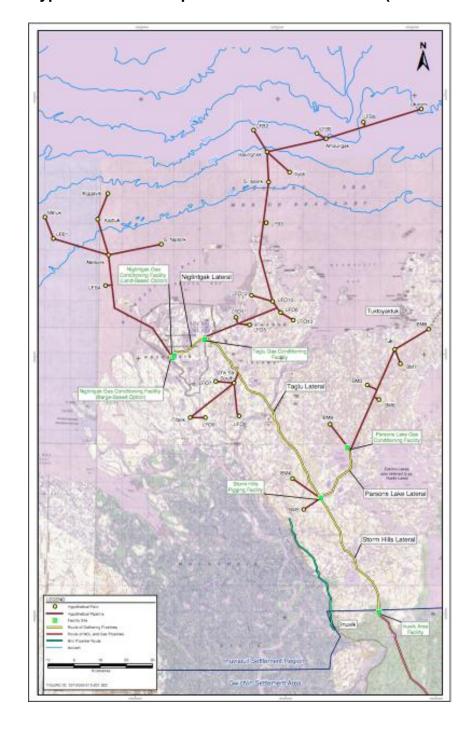



Figure 16. Hypothetical Development Scenario Year 2030 (from MGP 2005)

# 5. MACKENZIE DELTA - BEAUFORT SEA HYDROCARBON RESOURCE POTENTIAL

The literature contains a number of estimates of discovered and potential oil and gas resources in the Mackenzie Delta and the Beaufort Sea. These include:

- NEB (1998) a probabilistic estimate of discovered recoverable oil and marketable gas for each field in the Mackenzie Delta/Beaufort Sea
- Canadian Gas Potential Committee (CGPC) (2005) an estimate of discovered and undiscovered gas resources in the combined Beaufort Sea/Mackenzie Delta
- Chen et al. (2007) an estimate of future oil discovery potential of the Mackenzie/Beaufort Geological Province
- Drummond (2009) an estimate of distribution of ultimate oil and gas resources in the onshore and offshore areas of the Mackenzie/Beaufort Basin.

The discovered recoverable oil resource in the combined Mackenzie Delta/Beaufort Sea is between 1 billion barrels (159 10<sup>6</sup>m<sup>3</sup>)(NEB 1998) and 1.2 billion barrels (183 10<sup>6</sup>m<sup>3</sup>)(Chen et al. 2007) and the total recoverable oil resource may be as high as 10.6 billion barrels (1691 10<sup>6</sup>m<sup>3</sup>)(Chen et al. 2007). The majority of the discovered oil reserves are located in the Beaufort Sea offshore.

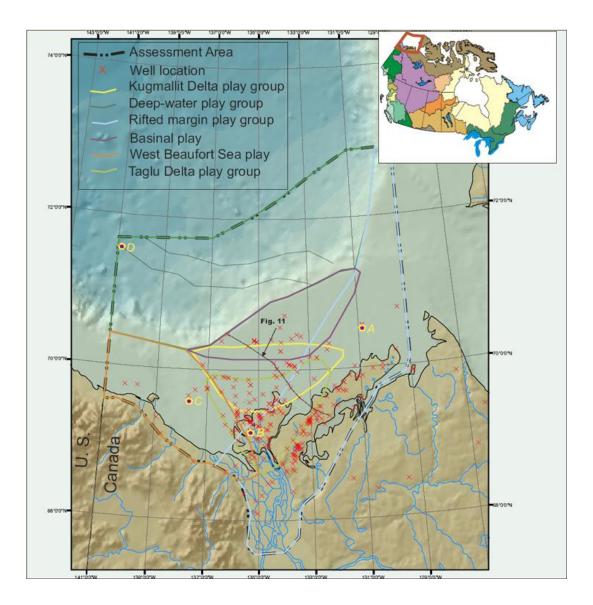

The estimated discovered marketable gas resource in the Mackenzie Delta and Beaufort Sea is between 9 trillion cubic feet (254.8 10<sup>9</sup>m³)(CPGC 2005) and 10.4 trillion cubic feet (294.5 10<sup>9</sup>m³)(Drummond 2009) and the ultimate marketable gas resource may be as high as 56.9 trillion cubic feet (1611.2 10<sup>9</sup>m³)(Drummond 2009). Discovered gas reserves are relatively evenly distributed between the Mackenzie Delta and the Beaufort Sea. Table 6 provides a summary of the regions currently estimated oil and gas potential.

Table 6. Mackenzie Delta and Beaufort Sea Oil and Gas Resource Potential

|                                | Resource                            | Current Estimate                                                |
|--------------------------------|-------------------------------------|-----------------------------------------------------------------|
|                                | Discovered Recoverable Oil Resource | - 1 to 1.2bb (159 to 183 10 <sup>6</sup> m <sup>3</sup> )       |
| Total Recoverable Oil Resource |                                     | - 10.6bb (1691 10 <sup>6</sup> m <sup>3</sup> )                 |
|                                | Discovered Marketable Gas Resource  | - 9 to 10.4Tcf (254.8 to 294.5 10 <sup>9</sup> m <sup>3</sup> ) |
|                                | Ultimate Marketable Gas Resource    | - 56.9Tcf (1611.2 10 <sup>9</sup> m <sup>3</sup> )              |

It is important to note that the Mackenzie Delta/Beaufort Sea Geological Province is still in an early stage of exploration. Chen et al. (2007) states, "It is expected that there will be both increased data and understanding that will lead to new large discoveries in the more remote areas and deeper parts of the sedimentary succession as the scope of exploration expands both geographically and technologically". As can be seen in Figure 17 the deep slope region of the Beaufort Sea has not been explored or assessed. The recent issuance of ELs with high value work commitments (Figure 11 and Table 4) is a strong indication that industry believes this area has the potential to hold large accumulations of hydrocarbons.

Figure 17. Location Map Showing Study Area, Play Group Boundaries and Exploratory Wells in the Mackenzie/Beaufort Geological Province (from Chen et al. 2007)



In addition, to the above quantitative resource estimates, AANDC on its website, provides an interactive Petroleum and Environmental Management Tool (PEMT). The PEMT displays generalized environmental and socio-economic information for selected Arctic regions to help inform decisions about oil and gas exploration and land management. The PEMT tool is used to identify and overlay potential environmental and socio-economic sensitivities, with map layers showing petroleum potential and geologic uncertainty. The user can view and print maps of specific grid areas of the Beaufort Sea, illustrating ratings for known environmental sensitivities, petroleum potential and geologic uncertainty.

### 6. REFERENCES

- AANDC (Aboriginal Affairs and Northern Development Canada). 2010. Northern Oil and Gas Annual Report 2010. QS-8509-110-EE-A1.
- AANDC (Aboriginal Affairs and Northern Development Canada). 2011. Map of Oil & Gas Dispositions Beaufort Sea & Mackenzie Delta. Northern Oil and Gas Branch. September 2011.
- Axys Environmental Consulting. 1995. Beaufort Region Environmental Assessment and Monitoring Program draft report for 1993/1994. Prepared for Indian Affairs and Northern Development Canada and Dept. of Fisheries and Oceans Canada.
- ESL Environmental Sciences Limited and Seakem Oceanography Ltd. 1988. Beaufort Environmental Monitoring Project 1987-1988 final report. Prepared for Dept. of Indian Affairs and Northern Development and Environment Canada. R71-19/60-1989E
- BSStRPA 2008 Beaufort Sea Strategic Regional Plan of Action. April 2008.
- CAPP (Canadian Association of Petroleum Producers). 2009. Beaufort Regional Environmental Reports Summary. Prepared by LTLC Consulting in association with Salmo Consulting Inc. December 2009. Report 2009-0032.
- CAPP (Canadian Association of Petroleum Producers). 2011. Potential Oil and Gas Activities in the Beaufort. Presentation to NEB Arctic Offshore Drilling Review Sept. 12-16, 2011.
- Chen Z., Osadetz K.G., Dixon J., Morrell G., and J.R. Dietrich 2007 Geological Survey of Canada. Oil and Gas Management Directorate. Northern Oil and Gas Branch. Indian and Northern Affairs Canada. Natural Resources Canada. Poster of The Future Oil Discovery Potential of the Mackenzie/Beaufort Province 2007.
- CPGC (Canadian Potential Gas Committee). 2006. Natural Gas Potential in Canada Volume 1. 2005. ISBN 0-9682125-3-0.
- Dixit B. 2009. Regulation of Oil and Gas Activities in the Canadian Beaufort Sea. Presentation to the MMS Arctic Technologies Workshop October 13, 2009 Anchorage, Alaska, U.S.A.
- Drummond K.J. 2009. Northern Canada Distribution of Ultimate Oil and Gas Resources. Prepared for Northern Oil and Gas Branch. Indian and Northern Affairs Canada March 2009.
- Erlandson and Associates with Jessie Sloan. 2002. Oil and Gas Approvals in the Beaufort Sea. Regulatory Road Maps Project. Prepared for Indian Affairs and Northern

- Development Canada and the Canadian Association of Petroleum Producers. June 2002.
- GLJ (Gilbert, Laustsen, Jung Associates Ltd.). 2004. Mackenzie Gas Project. Gas Resource and Supply Study. Prepared for Imperial Oil Resources Ventures Limited. Effective May 1, 2004. 1035917.
- KAVIK-AXYS Inc. and FMA Heritage Resources Consultants Inc. 2008. Biophysical Research Requirements for Beaufort Sea Hydrocarbon Development. Prepared for Environmental Studies Research Fund. August 2008. Report No. 163.
- Headwater Group. 2006. Oil and Gas Exploration & Development Activity Forecast Northwest Territories 2007-2016. Prepared for Indian and Northern Affairs Canada
- IAGC (International Association of Geophysical Contractors). 2002. Marine Seismic Operations. An Overview March 2002.
- INAC (Indian and Northern Affairs Canada). 2007. Draft #5 Towards a View of Future Oil and Gas Development in the Mackenzie Valley, Delta and the Beaufort Sea. Revised September 7, 2007. Submitted to the Joint Review Panel for the Mackenzie Gas Project in INAC Response to Undertaking J-U-00225.
- IORVL (Imperial Oil Resources Ventures Limited). 2005. Mackenzie Gas Project. Environmental Impact Statement Additional Information. Submitted to the Joint Review Panel. March 2005. IPROCC.PR.2005.02.
- IORVL (Imperial Oil Resources Ventures Limited). 2010. Beaufort Exploration Licence 446 (Ajurak) Submission Regarding the Relief Well Policy for Offshore Drilling in Arctic Waters. Submitted to the National Energy Board March 2010. IPRCC.PR.2010.06.
- Morrell G. 2005. Beaufort Sea Oil and Gas Development. Presentation to the Beaufort Sea Strategic Regional Plan Workshop for Northern Oil and Gas Branch, INAC. March 2005
- Morrell G. 2007. Input to Discussion on Beaufort Sea Development Scenarios. Prepared by G. Morrell, INAC / Northern Oil and Gas. In the Beaufort Sea Strategic Regional Plan of Action Appendix IV: Industry Activity Scenario. June 27, 2007
- NEB (National Energy Board). 1998. Probabilistic Estimate of Hydrocarbon Volumes in the Mackenzie Delta and Beaufort Sea Discoveries. January 1998. Cat. No. NE23-78/1998E.
- NEB (National Energy Board). 2011a. The Past is Always Present, Review of Offshore Drilling in the Canadian Arctic Preparing for the Future. December 2011. Cat. No. NE23-167/2011E

- NEB (National Energy Board). 2011b. National Energy Board. Filing Requirements for Offshore Drilling in the Canadian Arctic. December 2011. Cat. No. NE23-167/1-2011E
- Peterson G.D., G.S. Cumming., and S.R. Carpenter. 2003. Scenario Planning: a Tool for Conservation in an Uncertain World. Conservation Biology. 17: 358-366.
- Timco G.W. and M.E. Johnston. 2002. Caisson Structures in the Beaufort Sea 1982-1990 Characteristics, Instrumentation and Ice Loads. Canadian Hydraulics Centre. National Research Council of Canada. Technical Report November 2002. CHC-TR-003.
- Timco G.W. and R. Frederking. 2009. Overview of Historical Canadian Beaufort Sea Information. NRC Canadian Hydraulic Centre Technical Report February 2009. CHC-TR-057.
- Wright & Associates Ltd. 2000. Full Scale Experience with Kulluk Stationkeeping Operations in Pack Ice. Prepared for the National Research Council of Canada July 2000. PERD/CHC Report 25-44.