Changes in Sea Ice Motion and Exchange in the Beaufort Sea: 1997-2012

M. Brady¹, S. Howell² and C. Derksen²

¹University of Waterloo, Dept. of Geography
²Environment Canada, Climate Research Division
The Beaufort Sea

- West of the Canadian Archipelago and east of the Chukchi Sea.
- Complete ice coverage in winter growth season with retreat of sea ice edge in summer.
- Mix of seasonal and multi-year ice.
Ice Dynamics in the Beaufort Sea

- Circulates according to the anti-cyclonic Beaufort Gyre.
- Beaufort Sea a favourable location for dynamic and thermodynamic thickening.
- Surviving ice is recirculated out towards the Chukchi and East Siberian Seas.

Perovich and Richter-Menge 2009-ARMS
Recent Trends and Variability

- Observed sea ice changes in the Beaufort Sea.
 - 1968-2012 mean September area trend: -5.4×10^3 km2 year$^{-1}$.
 - Dramatic September decreases in recent years.
 - Some evidence of ice thinning.

Kowk and Rothrock 2009-GRL (right)
Research Questions and Objectives

• How has sea ice velocity and ice area exchange changed in the Beaufort Sea?
 – **Objective (i)** Estimate sea ice velocity in the Beaufort Sea using RADARSAT from 1997-2012 and compare the results with previous methods.
 – **Objective (ii)** Estimate the sea ice area flux (exchange) within and between the Beaufort Sea and surrounding regions from 1997-2012.
 – **Objective (iii)** Using the results from (i) and (ii), explore the drivers of recent variability in sea ice dynamics within the Beaufort Sea.
 • Not going to address this objective in great detail.
Data: RADARSAT Image Acquisitions

<table>
<thead>
<tr>
<th>Year</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
<th>Year Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1997</td>
<td>114</td>
<td>81</td>
<td>104</td>
<td>90</td>
<td>119</td>
<td>125</td>
<td>189</td>
<td>177</td>
<td>52</td>
<td>14</td>
<td>171</td>
<td>120</td>
<td>1,356</td>
</tr>
<tr>
<td>1998</td>
<td>86</td>
<td>124</td>
<td>137</td>
<td>129</td>
<td>128</td>
<td>141</td>
<td>164</td>
<td>171</td>
<td>144</td>
<td>151</td>
<td>149</td>
<td>137</td>
<td>1,661</td>
</tr>
<tr>
<td>1999</td>
<td>132</td>
<td>125</td>
<td>144</td>
<td>147</td>
<td>173</td>
<td>185</td>
<td>189</td>
<td>188</td>
<td>172</td>
<td>187</td>
<td>176</td>
<td>185</td>
<td>2,003</td>
</tr>
<tr>
<td>2000</td>
<td>187</td>
<td>164</td>
<td>139</td>
<td>168</td>
<td>164</td>
<td>168</td>
<td>188</td>
<td>193</td>
<td>204</td>
<td>155</td>
<td>143</td>
<td>174</td>
<td>2,047</td>
</tr>
<tr>
<td>2001</td>
<td>162</td>
<td>166</td>
<td>184</td>
<td>176</td>
<td>194</td>
<td>183</td>
<td>246</td>
<td>239</td>
<td>211</td>
<td>224</td>
<td>218</td>
<td>208</td>
<td>2,411</td>
</tr>
<tr>
<td>2002</td>
<td>189</td>
<td>174</td>
<td>172</td>
<td>159</td>
<td>177</td>
<td>180</td>
<td>194</td>
<td>243</td>
<td>223</td>
<td>192</td>
<td>166</td>
<td>47</td>
<td>2,116</td>
</tr>
<tr>
<td>2003</td>
<td>215</td>
<td>171</td>
<td>199</td>
<td>165</td>
<td>182</td>
<td>218</td>
<td>256</td>
<td>257</td>
<td>259</td>
<td>256</td>
<td>234</td>
<td>230</td>
<td>2,642</td>
</tr>
<tr>
<td>2004</td>
<td>234</td>
<td>235</td>
<td>246</td>
<td>202</td>
<td>212</td>
<td>165</td>
<td>234</td>
<td>251</td>
<td>238</td>
<td>256</td>
<td>228</td>
<td>232</td>
<td>2,733</td>
</tr>
<tr>
<td>2005</td>
<td>234</td>
<td>186</td>
<td>198</td>
<td>176</td>
<td>186</td>
<td>157</td>
<td>182</td>
<td>221</td>
<td>217</td>
<td>200</td>
<td>233</td>
<td>242</td>
<td>2,432</td>
</tr>
<tr>
<td>2006</td>
<td>222</td>
<td>180</td>
<td>234</td>
<td>212</td>
<td>194</td>
<td>180</td>
<td>208</td>
<td>214</td>
<td>232</td>
<td>255</td>
<td>234</td>
<td>239</td>
<td>2,604</td>
</tr>
<tr>
<td>2007</td>
<td>292</td>
<td>246</td>
<td>293</td>
<td>292</td>
<td>282</td>
<td>278</td>
<td>297</td>
<td>294</td>
<td>295</td>
<td>273</td>
<td>214</td>
<td>188</td>
<td>3,244</td>
</tr>
<tr>
<td>2008</td>
<td>142</td>
<td>119</td>
<td>129</td>
<td>160</td>
<td>11</td>
<td>1</td>
<td>10</td>
<td>144</td>
<td>83</td>
<td>26</td>
<td>58</td>
<td>35</td>
<td>918</td>
</tr>
<tr>
<td>2009</td>
<td>23</td>
<td>20</td>
<td>25</td>
<td>26</td>
<td>43</td>
<td>34</td>
<td>75</td>
<td>99</td>
<td>102</td>
<td>75</td>
<td>34</td>
<td>32</td>
<td>588</td>
</tr>
<tr>
<td>2010</td>
<td>10</td>
<td>12</td>
<td>5</td>
<td>46</td>
<td>48</td>
<td>39</td>
<td>97</td>
<td>181</td>
<td>149</td>
<td>110</td>
<td>35</td>
<td>31</td>
<td>763</td>
</tr>
<tr>
<td>2011</td>
<td>27</td>
<td>19</td>
<td>20</td>
<td>46</td>
<td>45</td>
<td>32</td>
<td>81</td>
<td>155</td>
<td>170</td>
<td>160</td>
<td>73</td>
<td>45</td>
<td>873</td>
</tr>
<tr>
<td>2012</td>
<td>73</td>
<td>58</td>
<td>63</td>
<td>71</td>
<td>54</td>
<td>60</td>
<td>78</td>
<td>142</td>
<td>152</td>
<td>147</td>
<td>101</td>
<td>77</td>
<td>1,076</td>
</tr>
</tbody>
</table>

- **Two time periods:**
 - January to December: 1997-2007
 - July, August, September, October 1997-2012
Ice Motion Tracking using CIS-ASITS

Wohlleben et al. 2013-AO (top left)
Beaufort Sea Ice Area Exchange

- Similar ice flux estimation technique as Kwok (2006)-GRL and Howell et al. (2013)-JGR
 - Identify gates, estimate ice transport and produce net monthly exchange; uncertainty is dependent on length of gate
Results: Objective (i)

- Sea Ice Velocity
 - Monthly maps from 1997-2012 at 25 km and working on 5 km
 - Continuous time series for JASO from 1997-2012
 - 16-year mean was 4.78 km day\(^{-1}\) (±3.30 km day\(^{-1}\))
 - October showed highest monthly drift with mean of 6.5 km day\(^{-1}\)
Results: Objective (i)

- Confident (mostly) in 1997-2007 estimates and can make them available.
- Positive trend in 1997-2012 JASO sea ice drift (not shown)
 - Since 2008, CIS-ASITS picking up more problematic vectors perhaps because of more extreme melt.

Sept 24 - 25 2012
Results: Objective (i)

• Comparison with independent datasets
 – CIS-ASITS showed consistent positive mean bias ranging from 0.63 to 2.02 km/day – more work to be done here.
Results: Objective (ii) JASO Ice Flux

- Clear declines in MYI concentration at Prince Patrick and Southeast Beaufort
- Barrow gate shows variability in flux and MYI concentration, with dramatic decreases in flux after 2007
Results: Objective (ii) JASO Net Ice Flux

- Further emphasises the changes at the Barrow gate (bottom-left)
Results: Objective (iii) JASO Net Flux

September median sea ice concentration

- More melt in the Beaufort Sea during the summer

Kwok and Cunningham 2010-GRL (right)
Conclusions

- **Positive trend in sea ice drift in the Beaufort Sea**
 - Requires more investigation

- CIS-ASITS compares best with RIPS likely because of high spatial resolution
 - Investigate positive bias in more detail.

- Less ice area export via the Barrow gate 2008-2012
 - Sea ice melts before it can recirculate, overturning the conventional notion of the Beaufort Sea being a haven for ice to grow to a region where ice is lost (i.e. cemetery)
Future Work

- Update time series to include 2013 and 2014
- Further explore the positive bias in CIS-ASITS velocity estimates compared to other datasets
- Validate positive trend in JASO sea ice drift from 1997-2012 (not shown)
- Use winter month sea ice velocity estimates from 1997-2007 and look at the correlation between sea level pressure gradients at the exchange gates during the winter months to establish poxys to validate summer flux estimates.
Thank You